skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Svinkin, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a database of solar flares registered by the Konus-Wind instrument during more than 27 yr of operation, from 1994 November to now (2022 June). The constantly updated database (hereafter KW-Sun) contains over 1000 events detected in the instrument’s triggered mode and is accessible online at http://www.ioffe.ru/LEA/kwsun/ . For each flare, the database provides time-resolved energy spectra in energy range from ∼20 keV to ∼15 MeV in FITS format along with count-rate light curves in three wide-energy bands, G1 (∼20–80 keV), G2 (∼80–300 keV), and G3 (∼300–1200 keV), with high time resolution (down to 16 ms) in ASCII and IDL SAV formats. This article focuses on the instrument capabilities in the context of solar observations, the structure of the KW-Sun data, and their intended usage. The presented homogeneous data set obtained in the broad energy range with high temporal resolution during more than two full solar cycles is beneficial for both statistical and case studies as well as a source of context data for solar flare research. 
    more » « less
  2. null (Ed.)
  3. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  4. Abstract Multi-pulsed GRB 190530A, detected by the GBM and LAT onboard Fermi, is the sixth most fluent GBM burst detected so far. This paper presents the timing, spectral, and polarimetric analysis of the prompt emission observed using AstroSat and Fermi to provide insight into the prompt emission radiation mechanisms. The time-integrated spectrum shows conclusive proof of two breaks due to peak energy and a second lower energy break. Time-integrated (55.43 ± 21.30 %) as well as time-resolved polarization measurements, made by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, show a hint of high degree of polarization. The presence of a hint of high degree of polarization and the values of low energy spectral index (αpt) do not run over the synchrotron limit for the first two pulses, supporting the synchrotron origin in an ordered magnetic field. However, during the third pulse, αpt exceeds the synchrotron line of death in few bins, and a thermal signature along with the synchrotron component in the time-resolved spectra is observed. Furthermore, we also report the earliest optical observations constraining afterglow polarization using the MASTER (P < 1.3 %) and the redshift measurement (z= 0.9386) obtained with the 10.4m GTC telescopes. The broadband afterglow can be described with a forward shock model for an ISM-like medium with a wide jet opening angle. We determine a circumburst density of n0 ∼ 7.41, kinetic energy EK ∼ 7.24 × 1054 erg, and radiated γ-ray energy Eγ, iso ∼ 6.05 × 1054 erg, respectively. 
    more » « less